Appendix H — chapter3.analysis.model

chapter3.analysis.model

Defines a model to manage the reports generated by the machine and deep learning models.

Classes

Name Description
ActivityMetric Enumeration for each metric of interest from the model reports for individual activities. Values: PRECISION, RECALL, F1, SUPPORT.
Filter Class to represent a filter that can be applied to a dataframe of reports
Model Enumeration to represent the ML and DL models. Values: MLP, CNN, LSTM, CNN_LSTM.
ModelMetric Enumeration for each metric of interest from the model reports. Values: ACCURACY, TRAINING_TIME.
Source Enumeration to represent the data sources. Values: SP, SW, FUSED.
TargetFilter Enumeration for each attribute of interest from the model reports. Values: MODEL, SEATED, STANDING_UP, WALKING, TURNING, SITTING_DOWN.

ActivityMetric

chapter3.analysis.model.ActivityMetric()

Enumeration for each metric of interest from the model reports for individual activities. Values: PRECISION, RECALL, F1, SUPPORT.

Filter

chapter3.analysis.model.Filter(self, model, source, target, metric)

Class to represent a filter that can be applied to a dataframe of reports

Attributes

Name Type Description
model str Model to look for. One of libs.chapter3.model.Model
source str Source to look for. One of libs.chapter3.model.Source
target str Target to look for. One of libs.chapter3.model.TargetFilter.
metric str Metric to look for. One of libs.chapter3.model.ModelMetric or libs.chapter3.model.ActivityMetric

Methods

Name Description
apply Function to apply the filter to a specified dataframe.
apply

chapter3.analysis.model.Filter.apply(df)

Function to apply the filter to a specified dataframe.

Parameters
Name Type Description Default
df pandas.DataFrame Model reports. required
Returns
Type Description
pandas.DataFrame Filtered model reports.

Model

chapter3.analysis.model.Model()

Enumeration to represent the ML and DL models. Values: MLP, CNN, LSTM, CNN_LSTM.

ModelMetric

chapter3.analysis.model.ModelMetric()

Enumeration for each metric of interest from the model reports. Values: ACCURACY, TRAINING_TIME.

Source

chapter3.analysis.model.Source()

Enumeration to represent the data sources. Values: SP, SW, FUSED.

TargetFilter

chapter3.analysis.model.TargetFilter()

Enumeration for each attribute of interest from the model reports. Values: MODEL, SEATED, STANDING_UP, WALKING, TURNING, SITTING_DOWN.

Functions

Name Description
obtain_best_items Determines the best performant item (model or data source) from a DataFrame of statistical tests comparing groups.

obtain_best_items

chapter3.analysis.model.obtain_best_items(test_results, focus_on, groups)

Determines the best performant item (model or data source) from a DataFrame of statistical tests comparing groups.

Parameters

Name Type Description Default
test_results pandas.DataFrame DataFrame with statistical tests. Generated with libs.chapter3.statistical_tests.statistical_comparison. required
focus_on list[str] Items being compared. List items are one of libs.chapter3.model.Source or libs.chapter3.model.Model. required
groups list[str] Each group where focus_on items are compared. List items are one of libs.chapter3.model.Source or libs.chapter3.model.Model. required

Returns

Type Description
dict Dict containing the best performant item.